Matematicas [*Keyla:D*]

proposicion

Proposición (lógica)

En lógica y filosofía, el término proposición es un tanto ambiguo y se usa para referirse a:

  • Los objetos de las creencias y de otras actitudes proposicionales.
  • Los referentes de las cláusulas-'que', como «Juan cree que el Sol es una estrella».
  • El significado de las oraciones declarativas, como «el Sol es una estrella».

Es un producto lógico del pensamiento que se expresa mediante el lenguaje, sea éste un lenguaje común, cuando adopta la forma de oración gramatical, o simbólico, cuando se expresa por medio de signos o símbolos. En Lógica tradicional se distinguen la proposición y el juicio, por cuanto la primera es el producto lógico del acto por el cual se afirma o se niega algo de algo, mientras ese acto constituye el juicio.

Para Aristóteles, proposición es un discurso enunciativo perfecto, que expresa un juicio y significa lo verdadero y lo falso.

Un enunciado lingüístico (generalmente en la forma gramatical de una oración enunciativa) puede ser considerado como proposición lógica cuando es susceptible de poder ser verdadero o falso. Por ejemplo “Es de noche” puede ser Verdadero o Falso.

Aunque existen lógicas polivalentes, en orden a la claridad del concepto, aquí consideramos únicamente el valor de Verdad o Falsedad.

Se llama proposición atómica cuando hace referencia a un único contenido de verdad o falsedad; vendría a ser equivalente a la oración enunciativa simple en la lengua.

Proposición molecular cuando está constituida por varias proposiciones atómicas unidas por ciertas particulas llamadas "nexos o conectivas", que establecen relaciones sintácticas como función de coordinación y subordinación determinadas entre las proposiciones que la integran; tal ocurre en la función de las conjunciones en las las oraciones compuestas de la lengua.[2]

 

 Proposición, enunciado y creencia

Creencia, Enunciado y Proposición
Nos situamos en Venecia, donde viven Otelo, Desdémona, Yago y Emilia.
Consideremos el enunciado de Otelo cuando dice: “Casio ama a Desdémona”.
Consideremos el enunciado de Yago diciendo a Otelo: “Casio ama a Desdémona”.
Finalmente el enunciado de Emilia diciendo a Otelo: “Casio no ama a Desdémona”.
a) El enunciado de Otelo con respecto a su creencia es verdadero (en el sentido de que se corresponde a su creencia, verdad moral en oposición a la mentira); pero es un enunciado falso (en el sentido de que no se corresponde a lo real); y expresa al mismo tiempo una proposición lógica que puede ser verdadera o falsa.
b) El enunciado falso de Yago, en cambio, expresa una creencia falsa, mentira porque no responde a su creencia, y expresa la misma proposición lógica que el enunciado de Casio que puede ser verdadera o falsa.
c) Emilia por su parte expresa un enunciado verdadero respecto a su creencia y lo expresa mediante un enunciado verdadero que expresa asimismo una proposición lógica que puede ser verdadera o falsa, pero en cualquier caso siempre contradiciendo la proposición del enunciado de Otelo o Yago.

“Llueve” es un enunciado, lo mismo que “It rains”. Ambos enunciados expresan la misma proposición lógica por cuanto ambos representan siempre el mismo valor de verdad, verdadero o falso en cualquier situación, bien sea de verdad o de falsedad.[3]

También se distingue la proposición de la creencia.[4] Apreciar, percibir que llueve como acto interno del individuo fundamenta la creencia, con independencia de su expresión lingüística. Podríamos de alguna forma considerarlo como pensamiento. Mirar por la ventana y constatar que llueve suscita una creencia de que “está lloviendo”, con independencia de que se exprese afirmándolo en un enunciado.

Como proposición, (independiente de las creencias y los pensamientos de cualquiera; con independencia del lenguaje o forma de expresión lingüística en el que se exprese el pensamiento, incluso de la realidad de que llueva o no llueva), a la lógica lo que le interesa es únicamente la función: «poder ser verdadero o falso».

Algunos filósofos, por eso, llegaron a pensar que la lógica habla de lo posible, lo que puede ser o no ser, o de “mundos composibles”, pero no de lo real. (Mundo = conjunto determinado de posibles compatibles en una unidad posible).[5]

La lógica se preocupa de las proposiciones; y estudia las formas válidas según las cuales a partir de la verdad o falsedad de una o varias proposiciones se pueda argumentar o inferir la verdad o falsedad de otras.

Por eso la verdad lógica es una verdad formal, que no tiene contenido. Eso explica por qué puede establecer sus leyes y reglas de modo simbólico, construyendo diversos cálculos que puedan modelizar algunos contextos lingüísticos o teorías científicas, de forma semejante a las matemáticas.

Su elemento fundamental es la proposición lógica y la definición de las reglas.

Tengamos en cuenta que el cálculo lógico basado en valor V y F, traducido como sistema binario a 1 y 0, es la base sobre la que se han construido las máquinas de cálculo y los ordenadores o computadoras.

Los enunciados y los juicios subjetivos son estudiados por otras ciencias.

Proposición atómica y molecular

En los casos anteriores hemos considerado únicamente la posibilidad de un enunciado atómico o simple, simbolizada con una sola variable. Estas proposiciones se llaman atómicas.

Si establecemos conexiones lógicas entre varias proposiciones según unas reglas perfectamente establecidas en sus elementos simbólicos y definidas como funciones de verdad, construiremos proposiciones moleculares o compuestas.

Así la proposición “Si llueve entonces el suelo está mojado”, enlaza la proposición “llueve” con la proposición “el suelo está mojado”, bajo el aspecto de función de verdad “si…… entonces…..”.

 

Proposición lógica y valores de verdad

El valor de verdad de una proposición lógica atómica es, por definición, verdadero o falso (podemos representarlo como V o F).

Así el enunciado “llueve” es verdadero si y sólo si está lloviendo en ese momento. Pero si dicho enunciado se considera como proposición lógica atómica, p, entonces puede ser tanto verdadera como falsa.

Es una verdad de hecho o contingente, porque tiene los dos posibles valores de verdad, por la propia definición de proposición lógica.

El contenido de la relación de un enunciado con lo real no es objeto de la lógica sino de otras ciencias.

 Verdad de hecho o contingente, contradicción y tautología

El valor de verdad de una proposición molecular puede ofrecer los siguientes casos:

  • Que su valor dependa del valor de verdad de las proposiciones que la integran, según las conexiones lógicas que las unen. En ese caso dicha proposición tiene un valor de Verdad de hecho o contingente. Puede ser unas veces verdadera y otras veces falsa según la verdad o falsedad de cada una de las proposiciones atómicas que la integran.

El valor lógico V (verdad) de la proposición “llueve y hace calor”, sólo se dará en el caso de que las dos proposiciones “llueve” (p) y “hace calor” (q) sean tomadas en su valor de V; en los demás casos será falsa. Sin embargo en la proposición “llueve o hace calor” basta que una de las dos sea considerada en su valor de verdad V para que la proposición molecular sea verdadera. La función “y” conjuntiva y la función “o” disyuntiva se definen en tablas de verdad, como funciones de verdad, functores o conectivas.

Las dos proposiciones moleculares enunciadas más arriba pueden ser verdaderas o falsas según sean los valores que tomemos en consideración en cada una de las proposiciones que la integran. Por eso ambas son contingentes.

  • Que su valor de verdad no dependa del valor de verdad de las proposiciones que la forman, sino que, por la forma en que se establecen sus conexiones, como relaciones lógicas, siempre y necesariamente es falsa. Entonces esa proposición es una contradicción.

El valor de verdad de la proposición “llueve y no llueve” es una contradicción y siempre será falsa, con independencia del valor que consideremos V o F de “llueve” (p) y de “no llueve” (¬p). La función de verdad “no” se define mediante una tabla de verdad.

  • Que su valor de verdad no dependa del valor de verdad de las proposiciones que la forman, sino que, por la forma en que se establecen sus conexiones, siempre y necesariamente es verdadera. Entonces esa proposición es una tautología.

El valor de verdad de la proposición “llueve o no llueve”, es una tautología y siempre será verdadera con independencia de los valores que consideremos de “llueve” (p) o de “no llueve” (¬p).

El análisis del valor de verdad de una proposición se realiza mediante las tablas de verdad.

Las tautologías se constituyen como “leyes lógicas” o “verdades formales” y son la base sobre la que se construyen las reglas de inferencia en el razonamiento o cálculo lógico

 

 

Comentarios

No hay ningún comentario

Añadir un Comentario: